Spatial Feature Interdependence Matrix (SFIM): A Robust Descriptor for Face Recognition

نویسندگان

  • Anbang Yao
  • Shan Yu
چکیده

In this paper, a new face descriptor called spatial feature interdependence matrix (SFIM) is proposed for addressing representation of human faces under variations of illumination and facial expression. Unlike traditional face descriptors which usually use a hierarchically organized or a sequentially concatenated structure to describe the spatial arrangement of features in different facial regions, SFIM is focused on exploring inherent spatial feature interdependences among separated facial regions in a face image. We compute the feature interdependence strength between each pair of facial regions as the Chi square distance between two corresponding histogram based feature vectors. Once face images are represented as SFIMs, we then employ spectral regression discriminant analysis (SRDA) to achieve face recognition under a nearest neighbor search framework. Extensive experimental results on two well-known face databases demonstrate that the proposed method has superior performance in comparison with related approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

A novel Local feature descriptor using the Mercator projection for 3D object recognition

Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...

متن کامل

Face Recognition by Weber Law Descriptor for Anti-Theft Smart Car Security System

This paper proposes a smart anti-theft car security system, which not only identifies thief but also controls the car. The proposed system consists of embedded control platform, face recognition system, GPS(Global Positioning System) and MMS(Multimedia Messaging Service) modules used for preventing loss of vehicle. The paper introduces Weber Law Descriptor(WLD) for robust face recognition syste...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Face Recognition with Name Using Local Weber‟s Law Descriptor

In Image processing face recognition plays an important role in various biometric applications. WLD (Weber’s Local Descriptor) will be used for face recognition. WLD is a texture descriptor that performs better than other similar descriptors but it is holistic due to its very construction. Image is divided into number of blocks and WLD is calculated for each block and then concatenate them. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011